
# Abwasseraufbereitung und die 4.Reinigungsstufe

Sonja Winandi

11.03.2025 DWA-Mitte online best practice







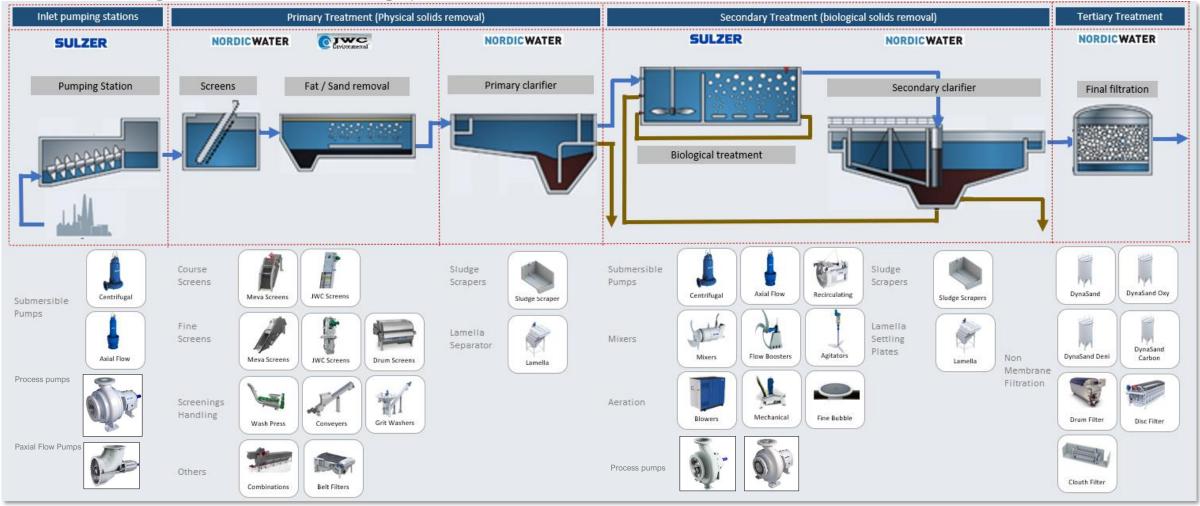
Sonja Winandi, M.Sc.
Process Engineer/ Tech Support
sonja.winandi@sulzer.com

### Kommunale Kläranlage

Abwasseraufbereitung und die 4.Reinigungsstufe

- Das öffentliche Kanalnetz in Deutschland hatte im Jahr 2022 eine Länge von rund 619 000 km. Dies entspricht über 15-mal der Länge des Äquators
- Im Jahr 2022 wurden in den rund 8700 öffentlichen Kläranlagen in Deutschland über 8,33 Milliarden Kubikmeter Abwasser behandelt.

#### Ausbau 4. Reinigungsstufe


- > 150.000 EW: 156 Kläranlagen
- > 10.000 EW: 2.081 Kläranlagen, 580 bis 600 davon ausbaupflichtig nach Risikobewertung
- → weitere ~ 700 KA werden bis 2045 ausgebaut





## Kommunale Kläranlage

Starkes Angebot an Behandlungsprodukten



### Spurenstoffelimination

#### Viertbehandlung

- Spurenstoffe/Mikroverunreinigungen sind anthropogene Stoffe, die in geringen Mengen in der Umwelt zu finden sind z.B. Medikamente, Chemikalien etc.
- Spurenstoffe sind persistent (nicht oder schlecht biologisch abbaubar) und teilweise bioakkumulierbar
- Die vierte Reinigungsstufe ist ein zusätzlicher Verfahrensschritt zur weitergehenden Abwasseraufbereitung auf der kommunalen Kläranlage











## Richtlinie über die Behandlung von kommunalem Abwasser - KARL

Novellierung der EU-Kommunalabwasserrichtlinie (91/271/EWG)

- Ziel: Schutz der Umwelt vor schädlichen Auswirkungen des Abwassers
- U. a.: Verringerung des Nährstoffeintrags in EU-Binnen- und Küstengewässer
- Kodifikation von Standards für die Abwasserbehandlung Ausstattung der Gemeinden mit Kanalisation und biologische Behandlung des Abwassers als EU-weiter Mindeststandard
- Deutsche Umsetzung u. a. mit der Abwasserverordnung (AbwV)

2027: Umsetzung der KARL ("innerhalb 30 Monate") in nationales Recht





- Erweiterung des Ziels (Art. 1 KARL) neben bisherigem
   Schwerpunkt auf Umweltschutz nun auch
  - → Gesundheitsschutz und
  - → Energie- und Klimapolitik
- Ergänzung/Präzisierung der Definitionen (Art. 2 KARL)
- Kanalisationszwang (Art. 3 KARL)
  - → Anschluss aller Gemeinden mit 1.000 EW und mehr an eine Kanalisation bis 31.12.2035 (NEU!)
- Zweitbehandlung (Art. 6 KARL)
  - → Erweiterung der verpflichtenden 2. Behandlungsstufe auf Gemeinden mit EW zwischen 1.000 und 2.000 bis 2035
- Drittbehandlung (Art. 7 KARL)

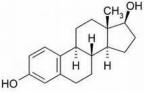




Drittbehandlung (Art. 7 KARL)

- ≥ 150.000 EW: Konzentration oder Minderung für P und N
- ≥ 10.000 150.000 EW: Konzentration oder Minderung für P u/o N

| Parameter                            | Konzentration                                                | Prozentuale Mindestverringerung                       |
|--------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|
| Phosphor gesamt(P <sub>ges</sub> )   | 0,7 mg/l (10.000 –150.000 E.W.)<br>0,5 mg/l (≥ 150.000 E.W.) | 87,5 % (10.000 –150.000 E.W.)<br>90% (≥ 150.000 E.W.) |
| Stickstoff gesamt(N <sub>ges</sub> ) | 10 mg/l (10.000 – 150.000 E.W.)<br>8 mg/l (≥ 150.000 E.W.)   | 80%                                                   |


Viertbehandlung (Art. 8 KARL)





- Anforderungen an Einleitungen aus Anlagen mit ≥ 150.000 EW gem. Anhang I
  - → Stufenweise Umsetzung (20 % bis Ende 2033; 60 % bis Ende 2039; 100 % bis Ende 2045)
- Anforderungen an Einleitungen aus Anlagen mit ≥ 10.000 EW gem. Anhang I, wenn
  - → Konzentration/ Akkumulation Mikroschadstoffe in einem Gebiet Risiko für menschliche Gesundheit oder Umwelt
    - → In jedem Fall: Trinkwassereinzugsgebiete, Badegewässer, Gebiete mit Aquakulturen
    - → Risikobewertung bei bestimmten Abflussverhältnissen, Natura 2000-Gebiete usw.
  - → Stufenweise Umsetzung (10 % bis Ende 2033; 30 % bis Ende 2036; 60 % bis Ende 2039, 100 % bis Ende 2045)





Viertbehandlung (Art. 8 KARL)





80 % Minderung bei Trockenwetterabfluss für mindestens sechs Stoffe Anzahl Kategorie 1 Stoffe doppelt so hoch wie Kategorie 2 Durchschnittliche Minderung von 80 % über alle Stoffe

| Kategorie 1 (Stoffe, die sehr leicht zu behandeln sind) | Kategorie 2 (Stoffe, die leicht zu entfernen sind) |  |  |
|---------------------------------------------------------|----------------------------------------------------|--|--|
| Amisulprid                                              | Benzotriazol                                       |  |  |
| Carbamazepin                                            | Candesartan                                        |  |  |
| Citalopram                                              | Irbesartan                                         |  |  |
| Clarithromycin                                          | ∑4- und 5-Methylbenzotriazol                       |  |  |
| Diclofenac                                              |                                                    |  |  |
| Hydrochlorothiazid                                      |                                                    |  |  |
| Metoprolol                                              |                                                    |  |  |
| Venlafaxin                                              |                                                    |  |  |

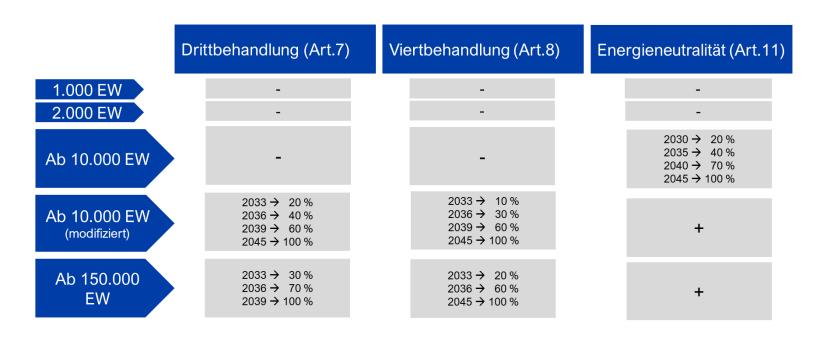


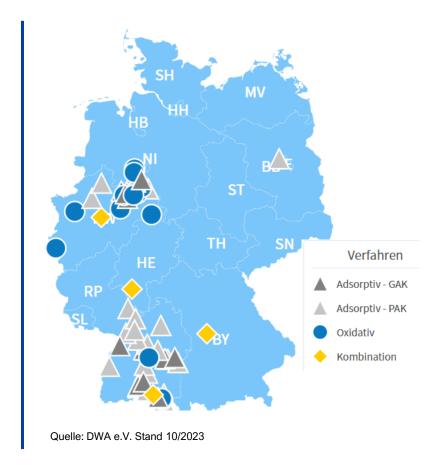


Erweiterte Herstellerverantwortung (Art. 9 KARL)



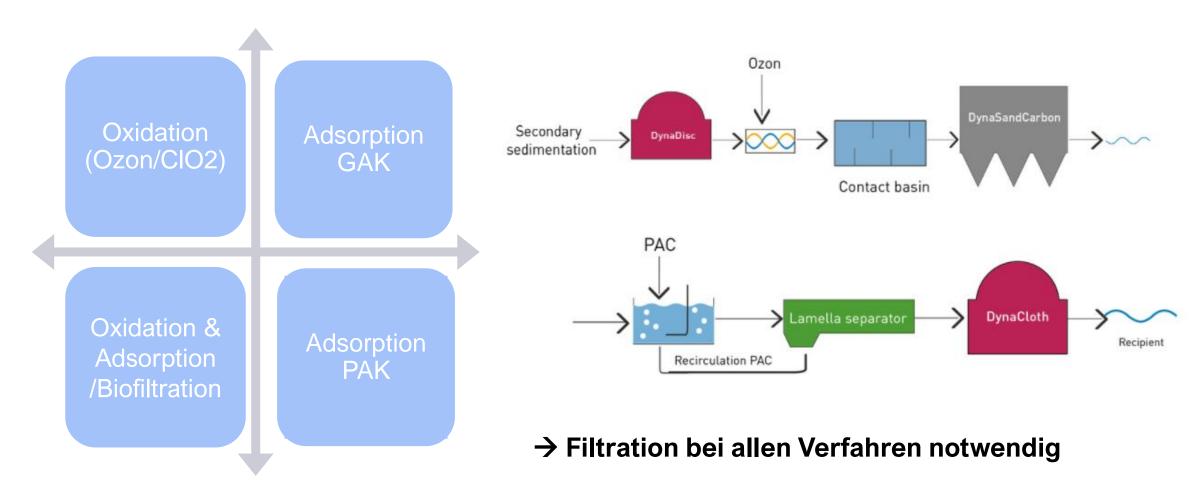
- Zweck: Gegenfinanzierung der erhöhten Abwasserreinigungsmaßnahmen, insbesondere Einführung der 4. Behandlungsstufe
- Betrifft Hersteller von Humanarzneimitteln (RL 2001/83/EG) und Kosmetischen Mitteln (VO 1223/2009)
- Individueller Beitrag je nach Toxizität und Quantität der auf den Markt gebrachten Produkte; gleichzeitig auch Anreiz für optimierte Umweltverträglichkeit der Produkte
- Herstellerverantwortung ist etabliertes Mittel zur Finanzierung von Umweltfolgen in Deutschland und EU (u. a. Abfallrecht)
- Erhebung auf nationaler Ebene
- Finanzierung beginnt drei Jahre nach Inkrafttreten der KARL
- Finanzierung von
  - → mind. 80 % der Gesamtkosten für die Viertbehandlung, einschließlich Investitions- und Betriebskosten



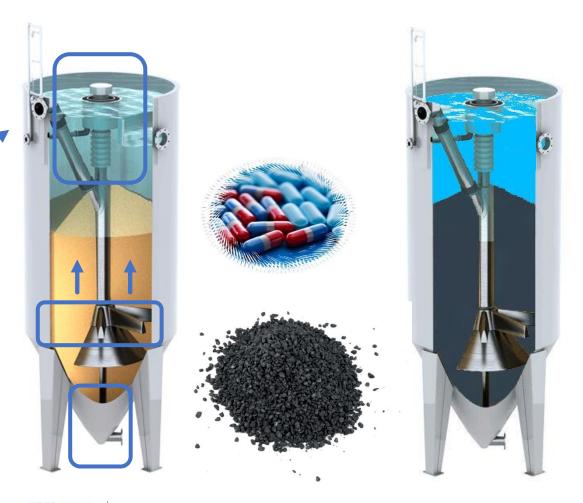




- Energieneutralität der Kläranlagen (Art. 11)
- → Zielvorgabe: Energiebedarf von Kläranlagen mit EW ≥ 10.000 soll bis 2045 schrittweise vollständig aus erneuerbarer Energie gedeckt werden
- Grenzüberschreitende Zusammenarbeit (Art. 12)
- Örtliche Klimabedingungen (Art. 13)
- Einleitungen von nicht häuslichem Abwasser (Art. 14)
- Wasserwiederverwendung / Einleitung (Art. 15)

- Anforderungen bei biologisch abbaubarem nicht häuslichem Abwasser (Art. 16)
- Gesundheitsparameter-Monitoring (Art. 17)
- Risikobewertung und management (Art. 18)
- Zugang Sanitärversorgung (Art. 19)
- Klärschlamm (Art. 20)
- Überwachung (Art. 21-23)
- Information der Öffentlichkeit (Art. 24)


Überblick KARL und Bestand Viertbehandlung in DE






### Verfahrensübersicht

Viertbehandlung



120 DynaSand Carbon Filter



| Durchfluss            | max. 4.680 m <sup>3</sup> /h |  |  |
|-----------------------|------------------------------|--|--|
| Filtergeschwindigkeit | max. 8 m/h                   |  |  |
| Inbetriebnahme        | 2023                         |  |  |
| Filterfläche          | 600 m² gesamt                |  |  |
| Filtermaterial        | GAK 8x30 mesh                |  |  |
| Filterbetthöhe        | 2,5 m                        |  |  |
|                       |                              |  |  |



## 5. Kongress Spurenstoffe in der aquatischen Umwelt

04.06.-05.06.25 in Baden-Baden







#### **Exkursion:**

- → Gemeinschaftskläranlage Baden-Baden/ Sinzheim
- →Wasserwerk Ottersdorf, das von den Stadtwerken Rastatt betrieben wird, wurde 2024 eine Wasseraufbereitungsanlage zur Entfernung von PFAS in Betrieb genommen.

April 2021



Januar 2022



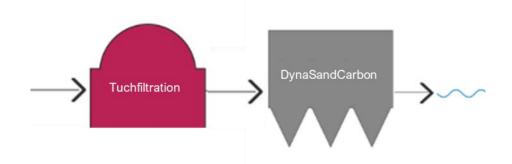


Quelle: https://www.sag-ingenieure.de/

**SULZER** Nordic Water







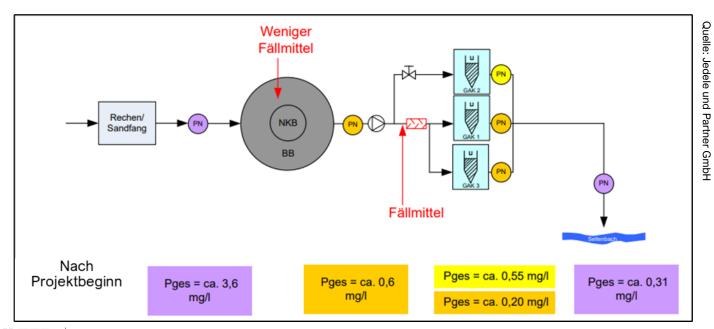

## Viertbehandlung KA Freiberg a.N

Inbetriebnahme 2024








#### 8 DynaSand Carbon Filter + vorgeschaltete Tuchfiltration

| Durchfluss     | max. 360 m <sup>3</sup> /h |  |
|----------------|----------------------------|--|
| Тур            | 2x4 DS5000 Carbon B 3.0    |  |
| Inbetriebnahme | 2024                       |  |
| Filterfläche   | 40 m² gesamt               |  |
| Filtermaterial | GAK 8x30 mesh              |  |
| Filterbetthöhe | 3 m                        |  |
|                |                            |  |

## Versuche KA Emmingen-Liptingen

P-Elimination durch einen DynaSand Carbon Filter

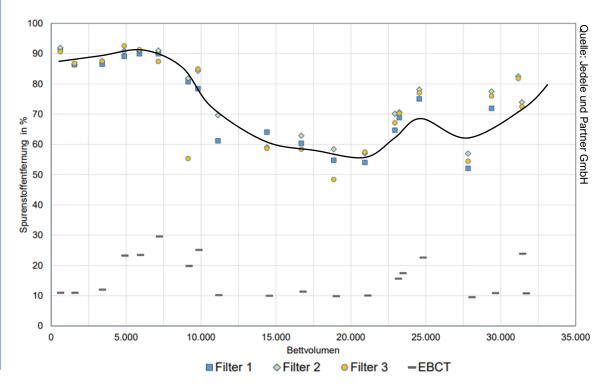
- Über 18 Monate wurden zwei GAK-Filter mit Fällmitteldosierung und ein Filter ohne Fällmitteldosierung miteinander verglichen
- Möglichst konstante Fällmitteldosierung auf zwei Filter





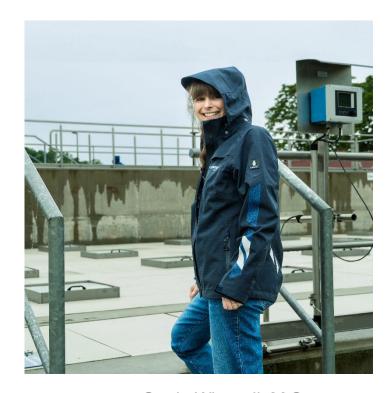
## Versuche KA Emmingen-Liptingen

Vorabzug der Ergebnisse aus dem Abschlussbericht 2025


#### **Ergebnisse Phosphor**

| Parameter /Mittelwerte            | Zulauf           | Ablauf              |             |                 |
|-----------------------------------|------------------|---------------------|-------------|-----------------|
| in mg/l                           |                  | GAK 1 <sup>4)</sup> | GAK 2       | GAK 3           |
| oPO <sub>4</sub> -P               | 0,43/0,441)      | 0,14 /0,111)        | 0,43/0,431) | 0,12/0,091)     |
| P <sub>ges,mf</sub> <sup>3)</sup> | 0,66/0,681)      | 0,20/0,171)         | 0,64/0,651) | 0,18/0,151)     |
| P <sub>ges</sub>                  | $0,56/0,58^{1)}$ | 0,28/0,261)         | 0,48/0,491) | $0,23/0,21^{1}$ |

- Nur Ergebnisse mit Fällmitteldosierung ausgewertet
- Rechnerische Addition der AFS Bildung aus der Fällmitteldosierung; entspricht Zulauf GAK-Filter 1 und 3
- Poes mf wurde nur in den ersten drei Versuchsmonaten analysiert
- Aufgrund defektem Probenehmer nur bis einschließlich 5.08.2024 bzw. 30.500 BV


#### Durch Fällmitteldosierung reduziert sich PO₄-P signifikant

#### Ergebnisse Spurenstoffentfernung



Fällmitteldosierung hat keinen oder maximal einen geringen Einfluss auf die Spurenstoffentfernung





Sonja Winandi, M.Sc.
Process Engineer/ Tech Support
sonja.winandi@sulzer.com